Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Asian J Androl ; 23(1): 52-58, 2021.
Article in English | MEDLINE | ID: mdl-32341213

ABSTRACT

The present study aimed to evaluate the influence of serum vitamin D levels on semen quality and testosterone levels. This is a cross-sectional study conducted at Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Laboratory in Sao Paulo, Brazil, with 508 male patients, aged 18-60 years, from 2007 to 2017. Seminal parameters and serum sexual hormones were correlated with serum vitamin D concentrations in 260 men selected by strict selection criteria. Patients were divided into normozoospermic group (NZG, n = 124) and a group with seminal abnormalities (SAG, n = 136). Evaluation included complete physical examination, past medical history, habits and lifestyle factors, two complete seminal analysis with sperm functional tests, serum levels of 25-hydroxy-vitamin D3(25(OH)VD3), total and free testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone-binding globulin (SHBG), total cholesterol, homeostatic model assessment of insulin resistance (HOMA-IR) index, and karyotype. The mean concentration of 25(OH)VD3was significantly lower in the SAG (P < 0.001) and positively correlated with all baseline seminal parameters and total testosterone levels. In addition, serum vitamin D3concentration was found to be positively correlated with sperm concentration (ß= 2.103; P < 0.001), total number of spermatozoa with progressive motility (ß = 2.069; P = 0.003), total number of motile spermatozoa (ß = 2.571; P = 0.015), and strict morphology (ß = 0.056; P = 0.006), regardless of other variables. This is the first comparative study to address the issue of serum vitamin D3content between normozoospermic patients and those with sperm abnormalities. It clearly demonstrates a direct and positive relationship between serum vitamin D level and overall semen quality, male reproductive potential, and testosterone levels.


Subject(s)
Semen Analysis , Testosterone/blood , Vitamin D/blood , Adolescent , Adult , Cholesterol/blood , Cross-Sectional Studies , Follicle Stimulating Hormone/blood , Humans , Insulin Resistance , Luteinizing Hormone/blood , Male , Middle Aged , Sex Hormone-Binding Globulin/analysis , Sperm Count , Young Adult
2.
Mol Genet Genomic Med ; 6(5): 785-795, 2018 09.
Article in English | MEDLINE | ID: mdl-29998616

ABSTRACT

BACKGROUND: One of the defining moments of human life occurs early during embryonic development, when individuals sexually differentiate into either male or female. Perturbation of this process can lead to disorders/differences of sex development (DSD). Chromobox protein homolog 2 (CBX2) has two distinct isoforms, CBX2.1 and CBX2.2: the role of CBX2.1 in DSD has been previously established, yet to date the function of the smaller isoform CBX2.2 remains unknown. METHODS: The genomic DNA of two 46,XY DSD patients was analysed using whole exome sequencing. Furthermore, protein/DNA interaction studies were performed using DNA adenine methyltransferase identification (DamID) to identify putative binding partners of CBX2. Finally, in vitro functional studies were used to elucidate the effect of wild-type and variant CBX2.2 on selected downstream targets. RESULTS: Here, we describe two patients with features of DSD i.e. atypical external genitalia, perineal hypospadias and no palpable gonads, each patient carrying a distinct CBX2.2 variant, p.Cys132Arg (c.394T>C) and p.Cys154fs (c.460delT). We show that both CBX2.2 variants fail to regulate the expression of genes essential for sexual development, leading to a severe 46,XY DSD defect, likely because of a defective expression of EMX2 in the developing gonad. CONCLUSION: Our study indicates a distinct function of the shorter form of CBX2 and by identifying several of its unique targets, can advance our understanding of DSD pathogenesis and ultimately DSD diagnosis and management.


Subject(s)
Disorders of Sex Development/genetics , Mutation, Missense , Polycomb Repressive Complex 1/genetics , Adult , Amino Acid Substitution , Disorders of Sex Development/pathology , Female , Humans , Infant , Male , Protein Isoforms/genetics
3.
Clinics ; 68(6): 785-791, jun. 2013. tab
Article in English | LILACS | ID: lil-676928

ABSTRACT

OBJECTIVE: To investigate the influence of (CA)n repeats in the insulin-like growth factor 1 gene and a variable number of tandem repeats of the insulin gene on birth size in children who are small or adequate-sized for gestational age and to correlate these polymorphisms with serum insulin-like growth factor 1 levels and insulin sensitivity in children who are small for gestational age, with and without catch-up growth. PATIENTS AND METHODS: We evaluated 439 infants: 297 that were adequate-sized for gestational age and 142 that were small for gestational age (66 with and 76 without catch-up). The number of (CA)n repeat in the insulin-like growth factor 1 gene and a variable number of tandem repeats in the insulin gene were analyzed using GENESCAN software and polymerase chain reaction followed by enzymatic digestion, respectively. Clinical and laboratory data were obtained from all patients. RESULTS: The height, body mass index, paternal height, target height and insulin-like growth factor 1 serum levels were higher in children who were small for gestational age with catch-up. There was no difference in the allelic and genotypic distributions of both polymorphisms between the adequate-sized and small infants or among small infants with and without catch-up. Similarly, the polymorphisms were not associated with clinical or laboratory variables. CONCLUSION: Polymorphisms of the (CA)n repeats of the insulin-like growth factor 1 gene and a variable number of tandem repeats of the insulin gene, separately or in combination, did not influence pre- or postnatal growth, insulin-like growth factor 1 serum levels or insulin resistance. .


Subject(s)
Female , Humans , Infant, Newborn , Male , Infant, Small for Gestational Age , Insulin-Like Growth Factor I/genetics , Insulin/genetics , Polymorphism, Genetic , Tandem Repeat Sequences/genetics , Adenosine , Brazil , Birth Weight/genetics , Blood Glucose/genetics , Body Height/genetics , Body Weight/genetics , Cytosine , Insulin Resistance/genetics , Insulin-Like Growth Factor I/analysis , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...